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Abstract: As an emerging hybrid imaging modality, cone-beam X-ray luminescence 
computed tomography (CB-XLCT) has been proposed based on the development of X-ray 
excitable nanoparticles. Owing to the high degree of absorption and scattering of light 
through tissues, the CB-XLCT inverse problem is inherently ill-conditioned. Appropriate 
priors or regularizations are needed to facilitate reconstruction and to restrict the search space 
to a specific solution set. Typically, the goal of CB-XLCT reconstruction is to get the 
distributions of nanophosphors in the imaging object. Considering that the distributions of 
nanophosphors inside bodies preferentially accumulate in specific areas of interest, the 
reconstruction of XLCT images is usually sparse with some locally smoothed high-intensity 
regions. Therefore, a combination of the L1 and total variation regularization is designed to 
improve the imaging quality of CB-XLCT in this study. The L1 regularization is used for 
enforcing the sparsity of the reconstructed images and the total variation regularization is 
used for maintaining the local smoothness of the reconstructed image. The implementation of 
this method can be divided into two parts. First, the reconstruction image was reconstructed 
based on the fast iterative shrinkage-thresholding (FISTA) algorithm, then the reconstruction 
image was minimized by the gradient descent method. Numerical simulations and phantom 
experiments indicate that compared with the traditional ART, ADAPTIK and FISTA 
methods, the proposed method demonstrates its advantage in improving spatial resolution and 
reducing imaging time. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. 

1. Introduction 

With the advances of X-ray excitable nanophosphors, X-ray luminescence computed 
tomography (XLCT) has attracted more attention for its promising performance [1,2]. In 
XLCT, X-ray excitable nanophosphors are used as imaging probes and emit visible or near-
infrared (NIR) light when irradiated by X-rays which penetrates the object to be imaged and 
can be detected by sensitive photon detectors. By solving an inverse problem using an 
appropriate imaging model of X-ray and photon transport, the three-dimensional (3-D) 
distribution of nanophosphors in the imaged object can be resolved. Compared with 
traditional bio-optical imaging modalities such as bioluminescence tomography (BLT) [3,4] 
and fluorescence molecular tomography (FMT) [5,6], XLCT has the following advantages. 
Firstly, due to the use of X-ray excitation, the interference of autofluorescence and 
background fluorescence can be avoided, which can improve the contrast and resolution of 
imaging. Secondly, because of the high penetrability and collimation of X-rays, the depth of 
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imaging can be improved, and the deep tissue imaging is expected to be realized. Thirdly, the 
X-ray CT of high resolution imaging and the optical molecular tomography with high
sensitivity can be obtained simultaneously. Therefore, XLCT has become a promising
imaging technique for fundamental research, drug development, and clinical studies.

After the first demonstration of XLCT, systems with different imaging geometries have 
been proposed to improve the spatial and temporal resolution. Compared with the narrow-
beam and fan-beam XLCT systems, cone-beam XLCT speed up the imaging process 
significantly at the cost of spatial resolution [7,8]. To improve its reconstruction quality, 
Zhang et al proposed a self-adaptive Bayesian method for CB-XLCT reconstruction and 
validated its superiority with numerical simulations and mouse experiments [9]. For fast 
XLCT imaging, Liu et al combined the compressive sensing (CS) technique with a wavelet 
transform to implement CB-XLCT imaging of a single target from single-view data [10]. 
However, due to highly scattered nature of light through biological tissues, fast reconstruction 
of multiple targets from few-view detection data is more ill-conditioned, limiting the 
application of CB-XLCT in in-vivo imaging. 

Considering that the distribution of nanophosphors inside bodies preferentially 
accumulates in specific areas of interest, the reconstruction of XLCT image is usually sparse 
with some locally smoothed high-intensity regions. It indicates that a combination of 
regularizations enforcing the conditions of sparsity and smoothness could further improve the 
reconstruction of multi-targets CB-XLCT. For sparsity consideration, the most basic sparse 
index is the L0 norm, which is the number of non-zero elements in all vectors. However, the 
normal inverse problem of L0, at least in the case of undetermined, is NP-hard and difficult to 
be solved [11]. In contrast, L1 norm is a convex relaxation of L0 norm and often used to 
enhance the sparsity of images, especially in the field of compressed sensing [12,13]. 
Corresponding optimization problem can be solved by many algorithms, such as gradient 
projection (GP) algorithm [14], iterative shrinkage-thresholding (IST) algorithm [15], fast 
iterative shrinkage-thresholding (FISTA) algorithm [16–18] etc. In this study, we choose L1 
penalty to enhance the sparsity of XLCT images and use the FISTA algorithm, which could 
get fast and accurate L1 solutions, to solve the reconstruction problem. 

A series of smooth priors have been applied in the reconstruction of tomography [19]. 
Among them, the prior constraints of quadratic terms are widely used. However, the prior 
restraint of the quadratic term is more inclined smooth out edges in images. Therefore, in this 
study, the total variation (TV) penalty [20], is designed to promote the smoothness while 
preserving the edges in the image. A variety of methods can be used to deal with TV penalty, 
such as gradient descent (GD) [21,22] and separable paraboloidal surrogates (SPS) [23,24] 
algorithm. In this study, the traditional GD method is adopted to minimize the TV constraint 
in XLCT reconstruction. 

In this paper, we propose a reconstruction approach based on joint L1 and total variation 
regularization for the CB-XLCT reconstruction. The remainder of this paper is organized as 
follows. In Section 2, the imaging model, the proposed L1-TV regularization and how to solve 
the algorithm are described in detail. In Section 3, both numerical simulations and phantom 
experiments are detailed. In Section 4, the numerical simulations and phantom experiments 
results are described for the performance evaluation of the proposed reconstruction approach. 
Finally, discussions and conclusions are given in Section 4. 

2. Methods

2.1 Forward model of XLCT 

For XLCT imaging, when irradiated by X-rays, nanophosphors in the object can emit visible 
or NIR light. Based on the previous studies, the number of optical photons emitted is 
proportional to the intensity distribution of the X-rays and the concentration of nanophosphor 
in the object, which can be expressed as [25]: 
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 ( ) ( ) ( )S X n= Γr r r  (1) 

where S(r) is the light emitted, n(r) is the concentration of nanophosphors, Γ is the light yield 
of the nanophosphors, and X(r) is the intensity of X-rays at position r, which can be given by 
the Lambert-Beer law [9]. 

In the visible and NIR spectral window, biological tissues have the characteristics of high 
scattering and low absorbing. Therefore, the propagation model of the emitted light in 
biological tissues can be established by the diffusion equation (DE) [26]: 

 ( ) ( ) ( ) ( ) ( ) ( )  aD Sμ−∇ ⋅ ∇Φ + Φ = ∈Ω  r r r r r r  (2) 

where Ω is the image domain, Φ(r) is the photon fluence, μa(r) is the absorption coefficient. 
D(r) represents the diffusion coefficient that can be calculated by ( ) ( ) ( )'1 / [3( ]s aD μ μ= +r r r , 

in which ( )'
sμ r is the reduced scattering coefficient. 

To solve the diffusion Eq. (2), the Robin boundary conditions are usually applied [27,28], 
as shown below: 

 ( ) ( ) ( ) ( )2 0  DκΦ + ∇Φ = ∈∂Ω  r r ν r r  (3) 

where ∂Ω  is the boundary of Ω , κ  is the boundary mismatch parameter and ν  represents 
the outward unit normal vector on the boundary. 

With the finite element method (FEM), Eq. (2) and Eq. (3) can be discretized into a matrix 
equation as: 

 = ΓAΦ FN  (4) 

with 
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Here N is the distribution vector of nanophosphors, aij and fij are the elements of matrix A and 
F, respectively. ψi(r) and ψj(r) are the corresponding elements of discretized geometrical 
meshes of the imaging domain, and X(r) is the intensity of X-rays at position r. 

Since the matrix A is positive definite, Eq. (4) can be further recast into 

 =Φ MN  (7) 

where 1M A F−= Γ , Φ represents the distribution vector of photon fluence. For optical 
tomography, only intensity values of Φ on the object surface could be measured, then Eq. (7) 
becomes 

 =measΦ WN  (8) 

where Φmeas is the vector of photon fluence acquired on the object surface, and W consists of 
rows of the weight matrix M corresponding to surface measurements. 

2.2 Inverse problem 

The goal of the XLCT reconstruction is to estimate the nanophosphor distribution N from 
Φmeas. In practical application of XLCT, noise of the XLCT imaging system needs to be 
considered, and Eq. (8) becomes: 
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 = + = +measb Φ ς Wx ς  (9) 

where b represents the actual fluorescence signals measured on the surface of the imaging 
object, ς  is the noise of the system, x = N represents the unknown distribution of 

nanophosphors in the imaging object. 
The objective function of the reconstructing method based on the joint L1 and total 

variation regularization can be expressed as: 

 
1

2

2 10

1
arg min

2 L TV TVx
λ λ

≥
= − + +x Wx b x x  (10) 

where 
1Lλ and TVλ are the regularization parameters. 

2.3 Solution of the inverse problem 

The solution to Eq. (10) is divided into two parts. First, the L1 regular solution of 
reconstructed image is obtained by the FISTA algorithm. Then the gradient descent (GD) 
strategy is applied to deal with the TV constraint in the reconstruction of XLCT. The 
flowchart of the proposed method is recapitulated in Fig. 1. Considering that x represents the 
distribution of nanophosphors, the non-negative constraint is applied before the TV 
minimization of x. The implementation process of these two parts is described as below, 
respectively. 

 

Fig. 1. The flowchart of the proposed method. 
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2.3.1 FISTA for solving the L1 regularization problem 

Let 
2

2

1
( )

2
f = −x Wx b , 

1
( )g =x x , the optimization problem of the L1 regularization term 

is changed to: 

 min{ ( ) ( ) ( ) : }nF f g≡ + ∈x x x x R  (11) 

In this study, the FISTA algorithm is used to solve Eq. (11) and a simple flowchart is 
summarized in Algorithm 1. 

Algorithm 1. FISTA-L1 

Input: b,W, ( ) ( )Tf∇ = −x W Wx b   

Initial Step: L0>0， nR∈x ,x0=0，y0=x0，t1=1 
Step k: (k>1)  Compute Lk (Lipschitz constant) based on 
backtracking line-search strategy 
do 
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2.3.2 GD for TV constraint in the reconstructed image 

The second part of the optimized problem (Eq. (10) can be expressed as the TV minimization 
problem, which is shown as: 
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After getting the current L1 regularization solution in the first part, the GD method is used 
to solve Eq. (12), in which the derivative of the image TV with respect to each pixel is 
approximately written as: 
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where δ  is a small positive number in order to avoid the denominator to zero. 
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3. Experimental design 

Numerical simulations and phantom experiments were performed to evaluate the performance 
of the proposed method based on the custom-developed CB-XLCT system in our laboratory. 
For comparison, three traditional methods, algebra reconstruction technique (ART), adaptive 
tikhonov regularization (ADAPTIK), and fast iterative shrinkage-thresholding (FISTA) 
algorithm, were also implemented for solving Eq. (9) with no regularization, L2 regularization 
and L1 regularization, respectively. The relaxation factor was set as 0.1 for ART algorithm. 
For ADAPTIK and FISTA algorithm, the regularization parameters were empirically set to 
10−4 and 10−5, respectively. In this study, to make the calculating process consistent for a fair 
comparison between the FISTA algorithm and the proposed algorithm, the L1 regularization 
parameter was set as 10−5 in the proposed algorithm. For the TV regularization, the gradient 
descent (GD) method was used to solve the minimization problem, in which the step length 
and total descent numbers were set as 0.1 and 10, respectively. For ART, ADAPTIK, FISTA 
and the proposed L1-TV algorithm, the iterative numbers were empirically set as 3000, 20, 
3000, 30, respectively. 

3.1 Numerical simulations setup 

Firstly, numerical simulations were carried out with a cylinder phantom. The cylinder 
phantom (Fig. 2) was composed of a large cylinder tank (3.0cm in diameter and 2.3cm in 
height) and two small tubes (4mm in diameter and 4mm in height) filled with Y2O3:Eu3+ 
(50mg/ml), which were placed inside the cylinder as the targets. The tank was filled with a 

mixture of water and intralipid and the optical properties were set as 10.03a cmμ −=  and 
1 110s cmμ −=  [29,30]. To evaluate the reconstruction results of two targets with different 

distances, numerical simulations were performed with the targets positioned at distances of 3, 
2 and 1mm (edge-to-edge distance between the two targets), respectively. 

 

Fig. 2. The cylinder phantom used in simulation studies. (a), (b), (c) A 3D view of the 
phantom, (d), (e), (f) the overhead view of the phantom. edge-to-edge distance between the 
two targets: (a),(d):3mm, (b),(e):2mm, (c),(f):1mm. 

For phantom simulations, the imaging model is discretized into 2,695 nodes and 12,285 
tetrahedral elements in a 3D region of 3.0 × 3.0 × 2.3 cm3. To make the results comparable 
with phantom experiments, in the numerical simulations, the distance from the X-ray source 
to the rotation center of the imaging system was set as 26.3cm and the EMCCD camera was 
positioned perpendicularly to the X-ray source-detector axis, with a distance of 45.0cm 
between the EMCCD and the rotation center. The voltage and current of the cone beam X-ray 
source were set as 50kVp and 1mA, respectively. The simulated 24 projections were obtained 
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every 15° during a 360° scan. After optical luminescence was obtained at different angles, 
white Gaussian noise was added into all projections with a zero-mean and signal-to-noise 
ratio (SNR) of 30DB to simulate noisy measurements. 

3.2 Phantom experiments setup 

In order to further validate the performance of the proposed method with real luminescence 
measurements, phantom experiments were performed by using a custom-developed CB-
XLCT system, which was shown in Fig. 3. The system mainly included a micro-focus X-ray 
source (Oxford Instrument, U.K.), a rotation stage, a flat-panel X-ray detector (2923, Dexela, 
U.K.) for high-resolution CT imaging, and an electron-multiplying charge-coupled device 
(EMCCD) camera (iXon DU-897, Andor, U.K.) for optical imaging. The maximum voltage 
of the X-ray source was 80kVp with the maximum power of 80W. The distances from the X-
ray source to the rotation center of the imaging system and to the flat-panel detector were 
26.3cm and 86.3cm, respectively. The EMCCD camera coupled with a Nikon 50-mm f/1.8D 
lens was positioned at 90° towards the X-ray source- detector axis, with a distance of 45.0cm 
to the rotation center. The minimum cooling temperature of EMCCD camera was −80°, 
which could effectively reduce the dark noise. 

 

Fig. 3. The schematic diagram of the CB-XLCT system. 

The configuration of the physical phantom used in imaging experiments was shown in 
Fig. 4, which was based on observations from the simulation studies. A glass cylinder (4.0cm 
in diameter, 4.0cm in height) containing a mixture of water and intralipid was fixed on the 
rotation stage. Two small glass tubes (3mm in diameter) filled with Y2O3: Eu3+ (50mg/ml) 
were symmetrically placed in the cylinder to simulate two targets. The edge-to-edge distances 
(EED) between the two tubes were 5.5mm and 1.8mm. 
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Fig. 4. The physical phantom used in imaging experiments. (a), (c) X-ray projections of the 
phantom corresponding to the two tubes with edge-to-edge distances of 5.5mm, 1.8mm. The 
region between two red lines is used for reconstruction in this study. (b), (d) CT slices of the 
phantom, corresponding to the transverse slices indicated by the blue lines in (a), (c). 

During imaging experiments, the voltage and current of the X-ray source were set as 
50kVp and 1mA, respectively. The phantom was rotated from 0° to 360° and the optical 
images were obtained every 15° by the EMCCD camera. The exposure time of the EMCCD 
camera was set as 1s, with the EM gain and binning set as 260 and 1 × 1. For the CT imaging, 
the projections were acquired with an angular increment of 1° on a 360° circular orbit, while 
the voltage and current of the X-ray source were set as 50kVp and 1mA, and the acquisition 
time for each projection was 150ms. The Feldkamp-Davis-Kress (FDK) algorithm [31,32] 
was used for CT reconstruction. 

3.3 Quantitative evaluation 

The quality of reconstructed CB-XLCT images was evaluated quantitatively by several 
indexes including the location error (LE), dice similarity coefficient (DICE) and contrast-to-
noise ratio (CNR) [30]. 

LE evaluates the localization accuracy of the reconstructed target, which is defined as the 
Euclidean distance error between the centers of true and reconstructed targets: 

 
2

-LE = r tL L  (15) 

where Lr and Lt denote the centers of the reconstructed and true targets, respectively. 
DICE reflects the similarity of the true and reconstructed targets and can be calculated by: 

 
2 tDICE =

+
r

r t

ROI ROI

ROI ROI


 (16) 

where ROIt and ROIr denote the regions of true and reconstructed targets, respectively, and |⋅| 
defines the number of voxels in a region. 

CNR is used for quantitative evaluation of noise and artifacts in reconstructed images, as 
shown below: 
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where ROI and BCK denote the target and background regions of the imaged object, ROIw  

and BCKw  are weighting factors determined by the relative volumes of the target and 

background, ROIμ  and BCKμ  are the mean intensity values of the ROI and BCK, and 2
ROIσ  

and 2
BCKσ  represent the variances of the ROI and BCK, respectively. 

4. Results 

4.1 Numerical simulations 

Firstly, the XLCT tomographic images of the targets positioned at different distances were 
reconstructed using 24 projections with different algorithms, as shown in Fig. 5. All the 
reconstruction results are normalized based on their maximum values. It can be seen for ART 
and ADAPTIK algorithms, the distribution of two targets can be effectively distinguished 
when the EED is 3 mm, but the task became difficult when the EED is 2 mm and 1 mm, with 
relatively large location errors, as shown in Figs. 5(d)-(i). Comparatively, the distribution of 
two targets can be effectively distinguished with FISTA and the L1-TV methods, when the 
EED is 2 mm. However, when the EED is 1 mm, no algorithms except for the proposed L1-
TV algorithm can distinguish them, as shown in Figs. 5(m)-(o). 
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Fig. 5. Tomographic images of the targets positioned at different distance were reconstructed 
from 24 projections. 1st row (from left to right): the true locations of the target edge to edge 
distances of 3mm, 2mm and 1mm respectively. 2nd row (from left to right): reconstructions 
with the ART algorithm for the two targets with edge to edge distances of 3 mm, 2mm and 
1mm respectively. 3rd row (from left to right): reconstructions with the ADAPTIK algorithm 
for the two targets with edge to edge distances of 3 mm, 2mm and 1mm respectively. 4th row 
(from left to right): reconstructions with the FISTA algorithm for the two targets with edge to 
edge distances of 3 mm, 2mm and 1mm respectively 0.5th row (from left to right): 
reconstructions with the proposed L1-TV algorithm for the two targets with edge to edge 
distances of 3 mm, 2mm and 1mm respectively. 
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Fig. 6. Tomographic images of the targets positioned at different distance were reconstructed 
from 4 projections. 1st row (from left to right): the true locations of the target edge to edge 
distances of 3mm, 2mm and 1mm respectively. 2nd row (from left to right): reconstructions 
with the ART algorithm for the two targets with edge to edge distances of 3 mm, 2mm and 
1mm respectively. 3rd row (from left to right): reconstructions with the ADAPTIK algorithm 
for the two targets with edge to edge distances of 3 mm, 2mm and 1mm respectively. 4th row 
(from left to right): reconstructions with the FISTA algorithm for the two targets with edge to 
edge distances of 3 mm, 2mm and 1mm respectively 0.5th row (from left to right): 
reconstructions with the proposed L1-TV algorithm for the two targets with edge to edge 
distances of 3 mm, 2mm and 1mm respectively. 

To evaluate the performance of the proposed method with fewer projections, the XLCT 
images of the targets positioned at different distance were reconstructed using 4 projections, 
as shown in Fig. 6. It can be seen that based on ART and ADAPTIK algorithms, the 
distribution of two targets can be effectively distinguished when the EED is 3 mm, but it is 
difficult to be distinguished when the EED is 2 mm and 1 mm using 4 projections and 
compared with the reconstruction results using 24 projections, the reconstruction results using 
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4 projections yield worse target shape and larger location error, as shown in Figs. 6(d)-(i). 
Besides, there is background noise in the reconstruction results because the ill-conditioned of 
reconstruction is more serious with the decrease of the projection angle. Correspondingly, the 
distribution of two targets can be effectively distinguished when the EED is 2 mm, but it is 
difficult to be distinguished when the EED is 1 mm using 4 projections based on the FISTA 
method, as shown in Figs. 6(j)-(l). Compared with the method of ART, ADAPTIK and 
FISTA, the distribution of two targets can be effectively distinguished when the EED is 1 mm 
based on the proposed L1-TV algorithm although only 4 projections can be used, as shown in 
Figs. 6(m)-(o). 

Table 1 summarizes the quantitative evaluation of the reconstructions using different 
methods. Here LE1 and LE2 represent for the localization error of the reconstructed target 1 
and target 2, respectively. For considering the prior information of the targets sparsity and 
local smoothness, the reconstruction results based on the proposed L1-TV method yield 
highest reconstruction quality in terms of the target shape and localization accuracy, among 
the four methods, which further confirm the observation in Fig. 6. 

Table 1. Quantitative evaluation of numerical simulations with 4 projections 

Targets distances /mm Indexes ART ADAPTIK FISTA L1-TV 

3 

LE1(mm) 0.56 0.63 0.59 0.34 
LE2(mm) 0.84 0.81 0.67 0.35 

Dice 0.46 0.39 0.58 0.61 
CNR 7.7 6.9 10.2 11.7 

2 

LE1(mm) 0.74 0.81 0.49 0.31 
LE2(mm) 0.62 0.65 0.59 0.41 

Dice 0.32 0.18 0.55 0.63 
CNR 7.9 6.3 9.2 10.8 

1 

LE1(mm) 0.63 0.8 0.79 0.54 
LE2(mm) 1 1.2 1.1 0.75 

Dice 0.37 0.19 0.41 0.67 
CNR 7.6 6.8 8.4 9.1 
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4.2 Phantom experiments 

 

Fig. 7. Tomographic images of the targets positioned at different distance were reconstructed 
from 24 projections for phantom experiments. 1st row (from left to right): the true locations of 
the target edge to edge distances of 5.5mm, 1.8mm respectively. 2nd row (from left to right): 
reconstructions with the ART algorithm and fusion of XLCT and XCT images for the two 
targets with edge to edge distances of 5.5mm, 1.8mm respectively. 3nd row (from left to right): 
reconstructions with the ADAPTIK algorithm and fusion of XLCT and XCT images for the 
two targets with edge to edge distances of 5.5mm, 1.8mm respectively. 4nd row (from left to 
right): reconstructions with the FISTA algorithm and fusion of XLCT and XCT images for the 
two targets with edge to edge distances of 5.5mm, 1.8mm respectively. 5nd row (from left to 
right): reconstructions with the proposed L1-TV algorithm and fusion of XLCT and XCT 
images for the two targets with edge to edge distances of 5.5mm, 1.8mm respectively. 

In order to compare the performance of different algorithms, the XLCT tomographic images 
of the targets positioned at different distance for phantom experiments were reconstructed 
using 24 projections, as shown in Fig. 7. It can be seen that for ART and ADAPTIK 
algorithms, the distribution of two targets can be effectively distinguished when the EED is 
5.5 mm, but the task became difficult when the EED is 1.8 mm, with relatively large location 
errors, as shown in Figs. 7 (c)-(k). Compared with the method of ART and ADAPTIK, 
FISTA method can reduce background noise. However, it is also difficult to distinguish the 
distribution of the two targets when the EED is 1.8mm, as shown in Figs. 7(l)-(o). 
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Comparatively, when the EED is 1.8 mm, no algorithms except for the proposed L1-TV 
algorithm can distinguish them, as shown in Figs. 7(p)-(s). 

 

Fig. 8. Tomographic images of the targets positioned at different distance were reconstructed 
from 4 projections for phantom experiments. 1st row (from left to right): the true locations of 
the target edge to edge distances of 5.5mm, 1.8mm respectively. 2nd row (from left to right): 
reconstructions with the ART algorithm and fusion of XLCT and XCT images for the two 
targets with edge to edge distances of 5.5mm, 1.8mm respectively. 3nd row (from left to right): 
reconstructions with the ADAPTIK algorithm and fusion of XLCT and XCT images for the 
two targets with edge to edge distances of 5.5mm, 1.8mm respectively. 4nd row (from left to 
right): reconstructions with the FISTA algorithm and fusion of XLCT and XCT images for the 
two targets with edge to edge distances of 5.5mm, 1.8mm respectively. 5nd row (from left to 
right): reconstructions with the proposed L1-TV algorithm and fusion of XLCT and XCT 
images for the two targets with edge to edge distances of 5.5mm, 1.8mm respectively. 

In order to further validate the performance of the proposed method for the fast imaging, 
the XLCT tomographic images of the targets positioned at different distance were 
reconstructed using 4 projection angles, as shown in Fig. 8. It can be seen that based on ART, 
it is difficult to be distinguished when the EED is 5.5 and 1.8 mm using 4 projection angles, 
as shown in Figs. 8(c)-(f). Based on the ADAPTIK method, the distribution of two targets can 
be effectively distinguished when the EED is 5.5 mm, but it is difficult to be distinguished 
when the EED is 1.8 mm using 4 projection angles. With sparse regularization, the 
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distribution of two targets can be effectively distinguished when the EED is 5.5 mm, but it is 
difficult to be distinguished when the EED is 1.8 mm using 4 projection angles based on the 
FISTA method, as shown in Figs. 8(l)-(o). Figures 8(p)-(s) show that with our proposed L1-
TV algorithm, however, even the targets with a distance of 1.8 mm could be separated 
successfully, demonstrating its advantage in improving spatial resolution in real imaging 
experiments. 

Table 2 summarizes the quantitative evaluation of the reconstructions using different 
methods with 4 projections. The results indicate that even in phantom experiments, the 
proposed L1-TV algorithm still performs better in target location, shape recovery and image 
contrast, when compared to the conventional reconstruction methods, which further confirm 
the observation in Fig. 8. 

CB-XLCT imaging using 4 projections requires less data acquisition time than that using 
24 projections. In addition, due to reduced measured data, the dimension of the system matrix 
is reduced greatly, which is 14237 *8810 for 24 projections and 14237*1469 for four 
projections. Therefore, Compared with XLCT imaging with 24 projections, reconstructions 
with 4 projections could implement fast imaging with reduced scanning time and memory 
footprint, as shown in Table 3. 

Table 2. Quantitative evaluation of phantom experiments with 4 projections 

Targets distances /mm Indexes ART ADAPTIK FISTA L1-TV 

5.5 

LE1(mm) 3.6 2.8 2.6 2.2 
LE2(mm) 2.1 1.9 1.1 0.78 

Dice 0.22 0.35 0.4 0.46 
CNR 1.4 2.1 2.5 3.7 

1.8 

LE1(mm) 4.8 4.5 2.8 2.3 
LE2(mm) 2.9 2.3 0.93 0.67 

Dice 0.29 0.32 0.41 0.45 
CNR 1.6 1.7 2.5 3.1 

Table 3. The data acquisition and reconstruction time of phantom experiments with 
different projections 

Projections data acquisition time /s reconstruction time /s 
24 84 343 
4 49 298 

5. Discussion and conclusions 

In this study, a reconstruction approach based on joint L1 and total variation regularization is 
proposed for the CB-XLCT inverse problem. The implementation of this method is split into 
the L1 penalty and the TV penalty. The L1 constraint is used to enhance the target sparsity and 
the TV constraint is used to maintain the local smoothness and preserve the edges of the 
targets of the reconstructed image. 

Numerical simulations and phantom experiments results confirm the superiority of the 
proposed method over the conventional ART, ADAPTIK and the FISTA methods. In 
numerical simulations, two targets could be effectively distinguished by the proposed method 
when the EED is 1 mm, while in phantom experiments, two targets could be resolved when 
the EED is 1.8 mm, demonstrating its advantage in improving spatial resolution. With the 
consideration of the prior information on target sparsity and local smoothness, the proposed 
method indicates its potential in improving the XLCT image quality in terms of target shape 
and localization accuracy, and in reducing imaging time by reconstructions with fewer 
scanning angles. 

For the phantom experiments, the whole scanning time consist of the rotation time and the 
acquisition time of the EMCCD camera. In our imaging experiments, the speed of the rotation 
was 6 degrees per second and the exposure time of the EMCCD camera was set as 1s per 
view. That resulted in more time spent on the rotation process, where the acquisition time of 4 
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projections was quite limited. The current configuration of the imaging system makes the 
reduction of imaging time using the proposed method not obvious in phantom experiments. 
With the increase of rotation speed and the exposure time in in-vivo experiments, the benefit 
of the proposed method on imaging time reduction would be further recognized. 

Although the system setup for numerical simulations and phantom experiments appeared 
similar, the results were not identical, especially when the target distance was 1.8 mm in 
phantom experiments. The possible reason may be that in numerical simulations, inaccuracies 
were mainly caused by simulation noise and numerical errors due to the ill-posedness of the 
system matrix. In contrast, in phantom experiments, inaccurate modeling of optical properties 
and measurement noise, geometric error of the imaging system, and other factors, would 
further deteriorate the reconstruction results. 

In this study, the fast iterative shrinkage-thresholding (FISTA) algorithm is used to solve 
L1 regular constraint. Besides FISTA algorithm, it can be solved based on the L1-Ls algorithm 
[33] and the separable paraboloidal surrogates algorithm [23,24]. In addition, the traditional 
TV model is adopted in the proposed L1-TV method. To further improve the performance of 
the proposed method, the edge-preserving total variation (EPTV) [34] and the adaptive-
weighted total variation (AWTV) [35] can be used in the future studies. Nevertheless, due to 
the uncertainty of the CB-XLCT forward model, the reconstruction is very ill-conditioned. It 
is difficult to obtain high quality reconstructions in the phantom experiments, especially when 
targets are closer. In addition to studies on reconstruction methods, further investigations on 
constructing more accurate propagation model of photons, such as by using the radiation 
transfer equation, may provide additional benefit for CB-XLCT imaging. 

In summary, a reconstruction approach based on joint L1 and total variation regularization 
was proposed in this study. Compared to the traditional ART, ADAPTIK and FISTA method, 
the proposed method demonstrated its advantage in improving spatial resolution and reducing 
imaging time, which can promote the widely use of CB-XLCT in vivo. 
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